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ABSTRACT

Let a,U e C 2(9) where 0 is a bounded set in Rn and let

1 2

We suppose that a,U > 0 for x e A and that

lim U(x) - 4

Under some smoothness assumptions, we prove that the Lagrangian system

associated with the above Lagrangian L has infinitely many periodic

solutions of any period T.
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SIGNIFICANCE AND EXPLANATION

The question of existence and the number of periodic solutions (normal

modes) for a classical mechanical system is a problem as old as the field of

analytical mechanics itself. The development of the nonlinear functional

analysis has renewed interest in these problems( 7' iis paper we considersa

mechanical system which is constrained in a potential well. We suppose that

the dynamics of the system is described by the Lagrangian

1 2 n
L(x,C) - i a(x)ll - U(x), x e 0, e Re

where 2 is a bounded open set in Rn , and a,U e C2(0) are positive

functions with

lim U(x) 4a
x+30

Under some technical assumptions on a and U we prove that our dynamical

system has infinitely many periodic solutions of any period T > 0.
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NORMAL 140DES OF A LAGRANGIAN SYST04 CONSTRAINED IN A POTENTIAL WELL

V. Send.'

1.* INTRODUCTION AND MAIN RESULTS.

Let &,U + R where A) is an open not in On. We make the following ass uption

( Lo) Q) is bounded and its boundary is C 2 .

(LI) U e C 2(2)

(L2 ) ILK DCX) 4

CL3  ha Vu(x)ov~x) =4 where v(,c) - -V dist~x,99)
(L3) "a U~x)

CL4) a e C 2(

(LS~) a~x) >0 for every x e C

(L6) for every x e an such that a(x) - 0, Va(x) * 0.

We consider the Lagrangian

2

x eC),e T 0 - , and 1*1 denotes the norm in 0",

and we look for normal modes of the dynamical system associated to this Lagrangian, i.e.

* periodic solutions of the following system of ordinary differential equations:

f yec C3,2)

C1.2)~ ~ aMT~ = iIVa~y) - Va(y) * ~ -VUC'Y)

where *denotes Land **denoted the dot product in On". We restrict our
dt

attention to periodic solution of a given period T, and in order to simplify the notation

we suppose T -1. Also it is not restrictive to suppose that

(L7 ) U(x) )0 for x e a and minU~x) -0.
zen

The main result of this paper is the following theorem

*Dipartiasnto di Mateatica, Universita di Sari, Sari, Italy

Sponsored by the United States Army under Contract No. DAAG29-SO-C-0041.
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Theorem 1.1. If iL 1 )-(L 7 ) hold then the equation (1.2) has infinitely many periodic

distinct solutions of period 1. More exactly there exists a positive integer No and two

positive constants 3* and Z_ such that for every N A No there exists Y N e C2(a,Q)

such that

(I) YNin solution of (1.2)

(ii) Y~ has 21riod-
N N

(III) 3 N2  N) C E*N2

where 2(y) _ . a(Y(t))It(t)j2 + U(Y(t)) is the "energy" of yv.

where J =. f Qay 4 111 2 
- U(YN )dt and a and B are constant which depend only on 0

(but not on U and N). Moreover if U(x,) - 0 (i.e. x. is a minimum point) and

U(x) _o~ix _ x.1I2) for x x3

then we can choose No - 1.

Remarks 1. Notice that (ii) does not say that - is the minimal period of YN' It might
N

happen that yNhas a smaller period. Thus it may happen that TN ' T34 for some N * N.

However (iii) implies that if K >> N then TM * T34 .

11. As easy one-dimensional examples show It Is possible that equation 1.2 has no

periodic solution with minimal period 1.

111. Assumption ML3) which may appear as the less natural one, describes the

behaviour of U(x) as x 30S. It says that U(x) cannot "oscillate" too badly near the

boundary.

IV. We have decided to consider Lagrangian of the form (1.1) (i.e. with a(x) not

identically I and in particular with a(x) which may degenerate on 30) because in this

way theorem 1.1 can be applied to the study of closed geodesic for the Jacobi metric (which

degenerates for x + 30) 1 cf. B1

V. By the proof of the theorem it will be clear that the same result hold for a

Lagranglan of the form

L(X,E) - lijaij(x)CiC - U(x)

with 1,a,(C C a lt2 and satisfies CL4-L6). More in general, the same method

iii, i
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apply also to the case in which Q is a Riemann manifold with a C2 -boundary. We have

decided to consider a simpler case in order to not make the notation and the uninteresting

technicalities too heavy.

VI. The results of theorem 1.1 holds also if a and U are of class CI (cf.

remark 11 after theorem 2.3). However, in order to not get involved in technicalities

which will obscure the min ideas we have preferred to treat the C2 -case.

The study of normal modes of nonlinear Hamiltonian or Lagrangian systems is an old

problem which in the last years has attracted new interest. We refer to [R1] for recent

references on this subject. However, as far as I know there are no results of the nature

of theorem 1.1, i.e. periodic solutions in a potential well. The more similar situations

to the one considered in this paper are the following ones

(a) 0 is a compact manifold without boundary

(b) 9 - but U grows more than quadratically for mxJ 4- or, more precisely

0 < U(x) 4 OU(x) * x for x large

(notice that the above condition is the analogous of L3 ) when 1 -1 e)

In both cases (a) and (b) we have a result similar to heoren 1.1 (cf. [B2 ] for (a)i

(R4 ], [BY] or [G] for (b) also the case (b) has been considered in [R2 ], [BR] and [3CF] in

the context of Hamiltonian systems).

What we want to remark here is the similarity of these three situations. In case (a),

the existence of infinitely many periodic orbits can be proved by virtue of the compactness

of 2 (provided that A satisfy some suitable geometric assumption as having the

fundamental group finite). In (b) and in theorem 1.1, the lack compactness is replaced by

the growth of U.

A last remark about the technique used to prove theorem 1.1. We have used variational

arguments reducing our problem to the proof of existence of critical points of a functional

defined on an open set in a Hilbert space. In proving the existence of critical points for

functional in infinite dimensional manifold the well known condition (c) of Palais and

ftale (P.S.) has been used. However in our situation (since we deal with a non-closed

manifold) (P.S.) is not sufficient. For this reason we have used a variant of (P.S.),

-3-
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which fit our case, obtaining an abstract theorem (theorem 2.3) which might have some

interest in itself as a further step in understanding the critical point theory in infinite

dimensional manifolds.

-4-
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2. AN RMWRACT THUORDE.

Let X be a H1ilbert space with norm 1*t and scalar product <-,-> and let A be

an open set in X (or more in general a Riemannian manifold embedded in X). C n (AIR)

will denote the set of n-tims Frech~t differentiable functions from X to R.

if f e Cn (A.1), fV will denote its rechit derivative which can be identified, by

virtue of <*,*>, with a function from A to X.

Definition 2.1. A function p : A + X is called a weight function for A if it satisfies

the following assumptions:

(i) a e cI (AIR)

(ii) p(x) > 0 for every x e A

(III) lin PWx -4

Definition 2.2. W~e may that a functional J e C (AR satisfies the weighted Palais-Smale

condition (abbreviated W.P.S.) if there exists a weight function p such that given any

sequence x. e A the following happens:

(VS ) f ~xn )adJ(xn) are bounded and J'Cx%) + 0 then xn has a

subsequence converging to ; e A

(WPS 2) if J(xn) in convergent and p(x n + +-, then there exists V > 0 such

that

1I(x n)I ), Vtp'(x n)I for n large enough.

Remarks. MI we say that a functional satisfy the Palain-Smale assumption on a Hilbert

(or lanach) manifold A if every sequence xn such that J(xn) is bounded and

JVx + 0 has a converging subsequence. most results in critical point theory have been

obtained using the (P.S.) assumption. However, as easy examples show (P.S.) is not

sufficient to obtain existence results when A is an open set in a Hilbert space, or to be

more precise, when A is not complete with respect to the Riemannian structure which we

want to use.

(11) If A is a closed Hilbert (or vanach) manifold then (P.S.) implies (W.P.S.) (it

Is enough to take P I 1). moreover if A - X, choosing PWx 1o090 + 1xi 2, then

-5-
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(W.P.S.) reduces to a generalization of (P.S.) introduced by G. Cerami [C] (cf. also

[m.B.F.] and [B.C.F.1).

(III) If a functional J satisfy (P.S.) then the set

Kc  (Y e AIJ(y) = c, j'(y) - 01

is compact. If J satisfies (W.P.S.) we can only conclude that

Kc n {Y e AIP(Y) 4 ml

is compact for every M ) 0. Thus (W.P.S.) might be an useful tool for analyzing

situations in which we do not expect to find a compact set of critical points at a given

value c. (However if p'(x) * 0 when p(x) is large, then Xc is compact).

Definition 2.21. Let X be an Hilbert (or Banach) space. Let S be a closed set in

X. and let Q be an Hilbert manifold with boundary 3Q. We say that S and 3Q link if

(a) S n aQ =

(b) if h Q A is a continuous map such that h(u) - u for every u e aQ,

then h(Q) t S .

Theorem 2.3. Let A be a Riemannian manifold embedded in a Hilbert space X and let

i e c2 (A,R). We suppose that

(J1) J satisfy (W.P.S.)

(J2) there exists a closed subset S C A and an Hilbert manifold Q C A with

boundary 30, and two constants 0 < a < B such that

(a) J(y) 4 0 for y e Q and sin lim J(y) < 0

Y+3Q
(b) J(y) , a for every y e s

(c) S and 3Q link.

we set N - (h : * Ath(y) = y if J(Y) < 0) and

c - inf sup J h(Y)

hem yeQ

Then c e [a,01 and it is either a critical value of J or an accumulation point of

critical values of J.

Remarks. (I) Theorem 2.3 is a variant of similar results (see [B.B.F.] theorem 2.3,

fB.R.) or fR3 1). The novelty lies in the fact that A might be an open set, therefore

-6-
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(P.S.) is not sufficient to guarantee that c is a critical value of J. Therefore we

have to require (W.P.S.). A consequence of this fact is that we do not know that c is a

critical value of Jo it might be an accumulation point of critical values of J (unless

(P.S.) is also satisfied)

(II) The assumption J e C 2(A,R) is not necessary. It would be enough to assume

3 e C I(AR). With the latter assumption the proof of lemma 2.4 would be more technical.

However if the reader is interested to prove theorem 2.3 under the less restrictive

assumption, he has to winterpolate" between the proof of lemma 2.4 and theorem 1.3 in

[B.B.F.]. Since in our application, it is sufficient to assume e C 2(A,R), we did not

bother to be as general as possible.

To prove theorem 2.3, we need the following lemma

Lmma 2.4. Let J e C2 (A,R) satisfy (W.P.S.). Suppose that c is not a critical value

of J nor an accumulation point of critical values of 3. Then there exist constants

. > C > 0 and a function n : [0,1] A A such that

(a) n(0,x) - x for every x e A

(b) n(1,x) - x for every x such that J(x) * [c - i,c + i] and every t e a

4 (c) n(lAc+c) C Act

where Ab (x e AJ(x) 4 b). Moreover i can be chosen arbitrarily small.

* Proof. We set

s= x e Aic - e c J(x) 4 c + c}

A = (x e Alp(x) c m)

A We claim that there exists i, R and b such that

(2.1) I3(x) ) blp'(x)l for every x e S -

In order to prove (2.1) we argue indirectly. Suppose that (2.1) does not hold. Then there

exists a sequence xn such that

(a) J(xn) * c

(2.2) (b) (x n ) + 4-

(c) IJ'(xn )1 4 bn P'(x n)I with bn + 0

Then we have

• -7-
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~IJ' (Xn)E

0 < v . min lim IWIN n)I (by (2.2)(a)(b) and (W.P.S.)(ii))
n

Smin lima bn - 0 by (2,2)(c)

This is a contradiction which proves (2.1). It is not restrictive to suppose that Z is

so small that [c - i.c + il does not contain critical values of 3, this is possible

because we have supposed that c is not an accumulation point of critical values.

We claim that for every M, there exists b. > 0 such that

(2.3) IJ'(x) , b for every x e ' A14,

In fact if (2.3) does not hold there exists a sequence such that

(a) J(x ) e Ic - i,c + ci

(2.4) (b) p(x n ) C M

(C) IN'(Xn )1 bn  for some sequence bn + 0

Then, by (WPO 1), it follows that xn has a subsequence conveying to some limit x So we

have

J'(i) - 0 and J(i) - ds f lim J(x

Thus ; e le - i,c + il is a critical value of J contradicting our choice of C Let

* a A + A be a Lipschitz continuous function such that

f() t if xe•s/

(2.4) 
#(x) I

o if x*SE

and we set

V(x) J 2 for x e
IJ (x)l

(2.5) 
V(x) -

for x#Si

By (2.1) and the definition of *, V is well defined and locally Lipschitz continuous. We

now consider the following initial value problem

.,.-..
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(2.6)

TI x

By basic existence theorems for such equations, for each x e A there exists a unique

solution l1(t,x) of (2.6) defined for t e Ct (x),t + W), a maximal interval depending

on x. we clair that t t (x) - .Let us prove that

+W

we argue indirectly and suppose that t Wx < .

First of all we can suppose that

(2.6') fl(t,x) e sjfor t e (o,t4Cx))

otherwise the conclusion follows directly from (2.5). If (2.6') does not hold we claim

that

(2.60) 4~~) H for every t e to,t+(x))

where M + t W and m4, - ma)(P(O),P}. If the above inequality does not hold then

there exists ti, t 2  with 0 4 tl < t2 < t~ +x) such that

M p(n(t)) 4 M4 for t e It14 t2]

and

(2.7) P~ii~t1 I Ni 1;P(ri(t2)) - M

then, for t e ct 1,t2]

I- P~W1t,x))1 I<P'(t,x)),V(T1(t,x)>I (by (2.6)]
dt

4# t)13' (n(t'x)I (by (2.5)]

.C [ by (2.6'), (2.4') and (2.1)]

Then we have

-9-



M - K1 - p(vl(t2 x)) - p(l(ti 1x)) [by (2.7)]

t
2  d

dI y p(n(t,x))ldt

ti
.4 1

4 (t - t1 )  (by the above inequality]
2 l b

+ X
< L+x. M - M1 (by the definition of MIbI

This is a contradiction. Therefore (2.6") is proved.

Then by (2.3), there exists b > 0 such that

(2.7') IJ'(Cr(t,x))l ) b, for t e [0,t+(x))

Now let tn be a sequence such that tn + t+(x). So we have

t n+k
In(t n+k X) - n(t n#x)l - If V(n(t,x))dti (by (2.6)]

t
n

< Jf u(t,x))l [by (2.4) and (2.5)

t

n

-1(tn+k - tn ) [by (2.7')]~4 nb k

This implies that n(tn ,X) is a Cauchy sequence converging some xe A as tn + t+(x).

Moreover P(;) = 1rm p(n(x,tn)) 4 M, therefore, by Definition (2.1)(i11), x e A. But
n++"

the solution of (2.6) with initial condition ; furnishes a continuation of n(t,x)

contradicting the maximality of t+ x). Analogously we can prove that t-(x)d

Therefore n(t,x) is defined for every t e n. Since C J(nCt,x)) - -1 if

n(t,x) e S-2 by an easy standard argument the conclusion follows. 0

Proof of Theorem 2.3. By virtue of lemma 2.4, the proof of theorem 2.3 is almost a

repetition of analogous proofs (cf. e.g. CB.R.], R3] or (B.F.]). We sketch it for

completeness. By the first part of (J2 )(a) and since the identity belong U, c ( B. By

the second part of (J2 )(a) and (J2 )(c), h(Q) n S * *, then by (J2 )(b), c ) a. Then c

-10-
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is well defined and is in (a,B1. It remains to prove that c is a critical value of J

or it is an accumulation point of critical values of J. Suppose that neither possibility

-holds. Then the assumptions of lemma 2.4 are satisfied. Choose i e (0,a], £ and n

as in lemma 2.4. By the definition of c, there exists h 8 U such that

sup J * h(x) 4 c + C

xeQ
By leima (2.4)(c) and the above inequality we have

(2.8) sup J 0 f i h(x) C C -c
xeQ

By lemma (2.4)(b) and the choice of , * h e HI then by the definition of c

sup J n * R(x) ) c

xeQ

The above inequality contradicts (2.8). Thus the theorem is proved. 0

4

~1
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3. RW? OF THBORZM 1. 1.

we set

(3.1) A 10 - (Y e H I(S ,RZ)Iy(t) e Q) (S'=[~](,)

where H I(S 1
1 R'P) denotes the Sobolev space obtained by the closure of C7-functions

(periodic of period 1) with respect to the norm

lYE [f i + 2 yi )dtl/

0

Since H I(S' 1 n') C CO(S,fle), then the set A 1 0 is an open set in H1 (lf') The

periodic solution of (1.2) are, at learnt formally, the critical value of the functional

(3.2) J(Y) - f f- a(y) It12 _ U(Y)Idt
However the functional (3.2) does not satisfy V.P.S. (nor the condition (J2 of theorem

2.3) on the set (3.1). Therefore it is necessary to modify the functional (3.2) in a

suitable way. Then we shall apply theorem 2.3 to the modified functional and finally we

shall prove that the solutions of the modified functional are the solutions of our problem.

In order to carry out this program we start defining a function h e C2 (A) with the

following properties

Ui) h(x) - d(x,30) if d(x,BQ) -Cd

(33)(11) h(x) > d 0  whenever d(x,30) > )

(iii) Yh(x) oc I for every x e i

(iv) h(x) 41 for every x e

where do is a constant sufficiently small. Such a function h exists since 2 is

assumed to have a C 2-boundary. Also we set

(3.4) h0  - d2 OM 2
0 (60 16I 2

where d2h denotes the second differential of hi. Moreover we set

(3.5) v(x) - -Vh(x) so that V(x) e C (0,1e) and 1V~x)I 4 1

Now let *,x e C"(8) be two functions such that

-12-



7'. r. W. V T -7

*(t) - t for t )1

It - for t ( -12 2

0 #'(t)t 1 #(t) for t e R

X(t) - 0 for t 4 1

X(t) " for t ) 2

X'(t) ) 0 for t e R

and set

aA(x) = *(Xa(x))

U %'NW -2  {X(kh(x))U(x) + (1 - x(kh(x))] I1
N h(x)

where N1 " supU(x)ix e h"([-, 1]). Clearly a1  and U are C2-functions and

(3.6) a (x) P -L for every x e 2

1 21

,:rX,, (Y) I {I a A ( ) 1j 12 _ U AN('Y)Idt

It is easy to check that JX1 (Y) e C 2 (A IG) and that

f I (a1(y)- •St + . (Va lT) * 8y)I2 - YUty(Y) * Iy)dt

0

for Y eA1l and 6y e HI(S 1 ,7pn )

Now we want to apply theorem 2.3 to the functional J ,N" In order to do this some le as

are necessary.

Lem 3.1. (a) there exists a constant b - b(A,N) such that

b( 2 
-2) 4 U 1,3 (x) 4 b(h-1-- + 1)

h(x) h(x)

(b) there are positive constants S and K1  (which masy depend on A and, N) such

that

-13-
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V (x)* 0V~x) , -3K
h(x)3

(c) for every 1N > 0 there are constants a(M) and X(M such that

U).(x) 4 2.V ID x)*vtx) + aCM) for every x e 2 and every XCM)X N XN

Md there exist. a function A. + OM) such that

Ci) Ui. O(X) - 4-

(ii) for every u e a such that UAN(X) 1C OM , we have

V)NX W -L U(x) and a W ) a~x)
X N2X

(e) there exists a constants X such that

VACx).v~x) C9 KaCx) for every x e a and every X > 0

Proof. (a) and (b) follows by the fact that for x sufficiently close to

aSl, U C' x) - * - (remember that for x sufficiently close to
N h(x)

DO, IVh~x)t - 1).

Let us prove (c). Since V~x) - -Vh~x) we have:

(3.6a) VU (x)-Vx X~)Vtx)-Vx [I1 - XC)AhCx))] vx1
XN h 3CW

+ Ax' CXh~x)) [-- -4 rJx)]IV~x)12 1
hC x)

If x'(Xh(x)) * 0, then x e h [, ]* Thus for such values of x, by C3.3)Civ) and

the definition of M.we have

X - U~x) )P MX - U~x) )P 0
h~x)2

Thus, since X'(t) ), 0 for every t e R.

C3.6b) X'C).h~x))[ --- - UWJ )- 0 for every x e a
h~x)2

by (L3 ) and easy computations, for every M > 0 there exists a0 such that

-14-
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(3.6c) VU(x)ov(x) ) MU(x) - a0  for every x e S

Moreover, for x sufficiently close to 311

Iv(x)1 .__ 2  M

h(x)
3  h(x)

2

Then there exists X(M) such that, for I ) X(M)

[1 - XC hx))] Iv(x)12 , (I - X(Ch(x))]
h(x)

3  h(x)
2

So by (3.6a), (3.6b), (3.6c) and the above inequality we get

VUwx)ov(x) L - {x(Xhlx)) x) - a0 + (I - x(lXhlx)] }
N h(x)

P U )N(x) - a 0

From the above inequality (c) follows. Now let us prove (d). We set

Ox - {x e Q)Xh(x) • 2 and Xa(x) ) 1)

and

O() - inf{x(Xh(x))U(x) + [1 - X(h(x))] MX I x e S - a),j
h(x)

2

by (3.3), (LS ) and (L2 ), O() . +.m for o r. oreover, if UXNCX) 2-" by the

definition of 90), x e Ox. Then Xh(x) • 2 and Xa(x) ) 1. Therefore X(Xh(x)) - I

and .1 *(Xa(x)) - a(x). This proves (d). In order to prove (), we set

r - {x e SQ)I(x) - 0) .

Since a(x) > 0 for x e a it follows that Va(x)ev(x) < 0 for every x e r. By virtue

of (L6 ) and the compactness of r, there exists a constant > 0 such that

(3.6d) Va(x).v(x) 4 -8 for every x e r

Let

9 - (x e OlVa(x)ov(x) < 0)

By (3.6d), a is an open neighborhood of r relative to Al. Then, since - B is

compact, by (L5 ), there exists a constant c€ such that

a(x) P c1  for every x I - B

-15-
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Using again the compactness of I - B, there exists a constant c2 such that

Va(x)-v(x) 4 c2  for every x e -

go, choosing K - c2/cl, it follows that

(3.6e) Va(x)ov(x) 4 Ks(x) for every x e

Then we have

Va*(x)ov(x) - #'(x)Va(x)ov(x)

• K*'( x)a(x) by (3.6e)

• K( *(Lx) - Ka,(x) by the definition of # and a, . 0

In order to apply theorem 2.3 to the functional J.,N  it is necessary to choose an

appropriate weight functions we make the following choice

(3.7) I I - , 1 2- dt]1/ 2

0 hy)

Ieaa 3.2. The function p defined by (3.7) satisfies the assumptions of definition 2.1.

Proof. (i) and (ii) are trivial. Let us prove (iii). Let k e A1Q be a sequence

approaching DA Ia and let tk be such that dJtst(Yk(tk).3Q) 4 dint(Yk(t),aA) for every

t e (0,1). We want to prove that p(yk ) + 4". Since p is invariant for utime

translations", we can suppose that tk - 0 for every k.

By the Schwartz inequality we have

lyk M) - Yk (o)l <ftItk W l t 1/2[Ift Ilk(01 2V1
/ 2 6 ny k Ut 1/2

0 0

Then, by (3.3)(iii),

(3.8) Ih(Yk(t)) - h(YkC0))l C max IVh(x)l - lYk(t) - Yk(0 )l Iykt/2

If we set

m(-k) - h(Yk(O))

by (3.8) we got
h(y k(t)) 4 M(y k ) + lyilt

/ 2 .

We can assume that lyki ) a > 0 for k large and mome positive constant a. Then we

-16-
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have

1 1 1 1

h(y(t)) (m(y) + yIt1 1/212 2 m(Y2 + 1¥12t

so

P ty )2 - J 2t 210 21=+ Io(1 2

k(* "0 h(y(t)) 20 UY) + ,y t NY k

From the above inequality and since IYk )a > 0 and )  0 for k + 4" the

conclusion follows. 0

LaMM 3.3. For every N ) 1 and A > 0, the functional J1, satisfy W.P.I.

Proof. To simplify the notation, in this proof we shall write J,U and a instead of

J1i .A, ,U and a,. 14t us start to prove WPS 1. In the following al,a 2 ,... will

denote suitable positive constants. Since o(y n )  is bounded, then by loma 3.2,

dist i(Yn,1A1A) a1 ) 0. so dist L Wyn#A 1O) 3 a 1  0 and this implies that

(3.9) dist(y ft(t),80) ) a1 > 0 for every t e [0,1]

Since J(Y n ) in bounded it follows that

1a(y, )j2 dt is bounded.

Then Iyl is bounded, therefore (may be taking a subsequence) we have thatHI

(3.10) "n . , weakly in Ul(81,an) and uniformly.

We have to prove that Tn * Y strongly in S1(81,13n). Since we suppose that 3'(yn) *

we have that

(3.11) 1a {lnn +2 (Vany l 2 -VUlYn)-dTldt - C n *12l

for every Sy e H1  (we have identified 81 with its dual), where Cn is a sequence

conveying to 0. by (3.9) and (3.10) it follows that

(3.12) f VU(yn )Y 4C IVO(Yn)I f f 4y a 2 Ily ,
L L,

Also, using (3.10), we have

(3.13) IVay ).5ylt 12(_ *Va(y )I Idyl NY 12 4 a Idyl
2 n n 2 n L. L n R1 3

-17-
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By (3.11), (3.12) and (3.13) it follows that

f a(l nn) $ - n16YI + (a 2 + a3)111y

for every 6 y e H1 (S 2 ,1e). In particular, taking 6y y n -n we get

(3.14) f a(yj n - y1 " c ny - yI + oC11

since SY - i - 0 for n + +". So by (3.6) and (3.14) we have

sinc I n  n n~

LL

1a(y n n Y) -Ia(yn )i(% - i)+ om1

IC t nly n- YI + *a(y n)I f io(n - i) + omI - C nIly' - iE + om1

from which the conclusion follows. Now we shall prove W.P.S.(ii). In the following

bl3 b2,... will denote suitable positive constants. Now let yn be a sequence such that

M31) (a) J(y n) is convergent

(b) pln I ) +

Then we have

I I' 12 4 f a(y )itn 2  (by (3.6))

' m 1Y(¥n ) + b1  (by (3.15)(b))

(3.16) b b2  2 + b3  (by lema 3.1(a))

Myn)

b2 p(yn)2 + b3  (by (3.7))

W4e now set

(6nlt) -v(yn(tl) --Vh(Yn(t))

I -18-
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Thus 6Yn e HI (sl1'e) and

(3.17) 16Y t 12 f Id2h(yn)( n 12 + lVh(Yn )12d C

4 S f It,.n2 + b6  (by (3.3)(111) and (3.4))

4 b5p(y n)2 + b6  (by (3.16))

Then by the above formula we have

(3.18) 1aynE 4 b7p(yn) + be

We have

|J0(y n)I(b7 P(yn) + be) A *J'(Yn)11Synl (by (3.18))

y -J' (y)(y

1 vu.y) oB - .(v fi6, - vacy ).Iy It.12
In nyy 22

(by the definition of 3)

a1) 2 .~)2 1 I Sv M 2
a VU(yn)Ov(yn) - a(yn)d h(,]2"- Vayn ).vlnl nI
0

(by the definition of Syn

f vu(yn)*V(y n Ia(y n) Id 2h(y n) [-] I IV ' 2 d

0 e. e

. 2 Ia(yn )I -v(Y )1 2f l I 2dt

b9 f e n ,-2

b9 f 3h(y bl0 f In
12 -b;o (by lemma 3.1)(b), (3.5) and (3.4))

9 3 - b11 (Yn)2 b12  (by (3.16))

Next we shall compute Ip'(y n). We have

P,(y)t1y1 - .-f j dt)- 1/2 Vh()4y dt for y e AIA and f"y e HI(Sl,jr )

h(y)
2  My)

3

-19-
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than

Ip'(Y)l - lsup 1 = uayl If Vh(y)ay dt 4
6yI*0y , 8y3*0 h y)

I sup L6 I~ ~~ dt C 1- f ~~ dt•

M IyI*O Idyl hy)3  p(Y) hy)3

By the Older inequality we have

1 1-1-2 [f 3-12/3

0 h(y) y)

then

3 [f 1 2 dt]
3 12 

_ P(-)3

hy) hy)

By the above inequality and (3.19) we get

)I(b. y + b.) ), 1 1 1 - b p(y )2 b
IJn)b7l yn )  2 b9  hy) 3 9 n 12

Now, since Pn 4, for n large enough we have

b1 1'j! (Y.") 1 (- 13f
h~n My n 

) 
3

Since qhl 4 1 (by (3.3)(ii)), the above inequality and (3.20) imply that

IJ(yn)| ) b13|P(yn )I

and this proves W.P.S.(ii). 0

To simplify the notation we shall suppose that

(3.21) 0 e a

Now let

V = (e H1 (S,1a)IY is a constant)

and let V1  its orthogonal complement in H1 (S1,R). We set

(3.22) Q a IV x (r e sin 2wtr ) 0)] 0 Al a, ae e n , lei = I

Let R be a constant small enough in order that the ball of center 0 and radius R is

contained in 0. Then there exists an integer number No  such that

-20-
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I -(x) 4 R for every x e BR(0) and every N ) N0

By the above inequality we get that
R2

(3.23) U ,NX) 4- for every x e %R(0) and every N ; No  and I > X0

where X0  is big enough in order that UNx - U(X) for every X ) 0  and every

x e BM(0). Observe that

(2.23') if U(x) _ o(xI2 ) then we can choose N0 - 1

provided that k is small enough

Now we set

(3.24) S - V' lyI - R)

We have the following lemma

Lemma 3.4. For every A o A0 !nd N ) NO, 3XN satisfy the assumptions 02) of theorem

2.3 where S and Q are defined by (3.22) and (3.24) respectively and a and B are

constants which depend only on Q. (but not on U, A and N).

Proof. (a) If y e Q then y(t) - Y, + y2 e sin(2wt) with yl a 10 and Y2 e R.

Since Q C AI then

y+ y2e sin(2wt) e n for every t e [0,1]

Therefore

(3.25) lyll < d; Iy21 < 2d where d = max dist(x,M)
xeanl

Thus, by (3.21)

XN(Y) 4 f 1 'y2 12[2w cos(2wt)]2dt 4 8,2d2 df 0 for every y e Q

Also 0 depend only on d i.e. on the geometry of 0. Now let us prove that

(3.26) mirk lim J(y) 4 0

We have

ag C (V n AI0) U (Q n 3Al0)

If Y e V AI) we have

J X,N (y) f -UN (Y)dt 4 0 (by (3.24) and the definition of V)

If y e Q () AQ we have

-21-

% .' %i '''I" ''' I:-':' ..- % . ' " ' ."""""-"- -","•""-:" ". .. •"-" '



,.. ,(Y ) = f (I Y2122w cos 2wt]
2 

- Y),dty <
X'N12 A2N

C 8w2 d2 - b f 1 2 + b (by lea. (3.1)(b))
h(y)

4 C - bp(y)
2  

(with K = Bid + b)

Then (3.26) follows by the fact that lira p(y) = 4 (cf. lemma 3.2). Now let us prove
Y+3A a

that assumption ( 2 )(b) of theorem 2.3 holds. If y e S then ly1 - R and ly(t)l 4 R

for every t e [0,1]. Then, for A ; A0  and N ; No, by (3.23) we have

2

(3.27) UAN(W(t)) < - for every t e (0,1] and every y e S

Moreover for y e s, by the Poincarg inequality f I¥[2 C f 111 2; then

S ll2  ! f It12 + IYl2 _ 1 Y12 _. R2  for y e S

Thus by the above inequality and (3.27) ye get
(y) [_Ijj12_ U12 I 2 1R2 dSf

X,( 2 [ - , (Y(t))'dt 4 1 1 2 1 f for every y eS

This proves assumption (b) of theorem 2.3 with m depending only on R, i.e. on the

Sgeometry of n. The fact that 3 and 3Q link, is proved in proposition 2.2 of

[B.B.?.). Actually there Q is defined in a slightly different way, but this fact does

not affect the proof. 0

Finally we are able to find solutions of the modified problem.

Lems 3.5. For every N ; N 0  and A P * 0 x 0  (where A* is a suitable constant) there

exists YXA, e C2 ($2 , ) such that

(a) a 4 AN(yAN) 4 0 where a and 0 depend only on a.

1 1
(b) a (Y ,)7 ,' - it 1 , 29e (Y, - (VA (Y ,)1 X,)1X - VU ,(YXH

(c) a • - a ( ,NWt N W 2 + UN(yN(t)) dgf E , a for every t e (0,1)

where a is independent of X and N.

-22-
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Proof. By lemma 3.3 and lemma 3.4 the functional J ,N satisfies the assumptions of

theorem 2.3. Then there exists Y YA,N e A 1 such that

(3.28) J'(y)[y) = 0 for every Sy e H (S1,R n )

and

(3.29) J(y) = cA,N with a ( cX,N 4

The above equation proves (a). Moreover by (3.28) it follows that YAN(t) satisfies the

equation (b) in a weak sense. By standard regularity arguments it follows that y is of
4

class C2 . Now let us prove (c). It is easy to check that

(3.30) - a (Y(t))1(t)l2 + U (yt))
2 X '

is an integral of the equation (b) (in fact it is just the energy). Therefore it is

independent of t; we shall call R ,M  its value. Integrating (3.30) between 0 and

I we get

(3.31) EN = I f.1 a (Y)jIj2 + U,.Y)}dt
4f,

Writing (3.29) explicitely we have

(3.32) a cf 1-1 a(Y)1112 - U ,(y)Idt 4

By (3.31) and (3.32) we get

(3.33) a ( E ,N 4 2 f U2eN(Yldt +

The above formula gives the first of the inequalities (b). In order to get the second one

more work is necessary (and it will be necessary, for the first time, to use the assumption

(L3 ) which has been used to prove lemma 3.1(c)). Writing (3.28) explicitely with

8y - v(y) = -Vh(y) we get

(3.34) f {aX(y)d 2h[1l 2 
+ -1 Va(y)-v(Y) ItI2 - VU(Y).V(Y)Idt = 0

Now take M 4h0 + 2K. Then, for A ) X(M), we have

U ,(ylt))dt M ,Y) + a(M) (by lemma 3.1(c))

f _Ih VU N( ]V(Y)dt

f- f {(y)d 2 ht] 2 
+ 1 Va(. (xll,12 dt + a(M) (by (3.34)

h KX 2

f a-ly) I 2 dt + f j axlyllj1 dt + a(M) (by (3.4) and lemma 3.1(e))
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1 (2I ) 1 f,&I (lh 2dt] + a(M)

1 w UXN (Y)dt + + a(M) (by our choice of M and (3.23))

Then we got

1 f U Cy)dt -C + a(i)

By the above inequality and (3.33) the last inequality (c) holds with a - 30 + 2a(M) and

X' - max(IM(.)A0 ). 0

Finally we can prove theorem 1.1

Proof of Theorem 1.1. For any N ) NO choose X(N) ) X* large enough much that

6(A(N))

N
2

where Ol) is defined in lema 3.1(d). Then setting 7,(t) - Y ,(N),N(t), by lemma 3.5

(c) we have

U (( t)) 4 a C 0G(A()) for every t e [0,1]

A(M),N 9

Thus by lemma (3.1)(d), we have that

3 )a(NC(YN~t)) - a(YK(t)

u (7,(t)) U(i(t)) for every t e [0.111C(N),NN N2

By the above identity we have that

(3.37) aC~v3)I-Y* 12 U(-~

Moreover, using again (3.36), by lea 3.5 (c), jN satisfy the following equation

Z I 2 - L

N

Therefore, setting YN(t 1 71;(04N, it follows that yN(t) satisfy the equation

alY yy  2 - 1 Va(YN) - (Vy.-N%)% - VUMY)

Then Ci) and Cii) of Theorem 1.1 are proved. By (3.37) and lemma 3.5 (a) we have that

ON 2  f I a(Y 2 
)I 1 2 ) 2
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The above inequalities prove (iv) of theoreu 1.1. Moreover, using again lemma 3.5 (c) and

(3.36) we get
, I 2 U evr

a(7)IylIl (N) a a for every t e (0,1)
2N

Therefore
2 Y 2a2 (- al(rl) i2 + UlyN) C oM2

2 NMN N

Thus (iii) of theorem 1.1 is obtained with 3- - a and + + . The last remark of
p-.

theorem 1.1 follows by (3.13'). 0

qi'
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